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a b s t r a c t 

Linear registration to stereotaxic space is a common first step in many automated image-processing tools for 

analysis of human brain MRI scans. This step is crucial for the success of the subsequent image-processing steps. 

Several well-established algorithms are commonly used in the field of neuroimaging for this task, but none have a 

100% success rate. Manual assessment of the registration is commonly used as part of quality control. To reduce 

the burden of this time-consuming step, we propose Deep Automated Registration Qc (DARQ), a fully automatic 

quality control method based on deep learning that can replace the human rater and accurately perform quality 

control assessment for stereotaxic registration of T1w brain scans. 

In a recently published study from our group comparing linear registration methods, we used a database 

of 9325 MRI scans and 64476 registrations from several publicly available datasets and applied seven linear 

registration tools to them. In this study, the resulting images that were assessed and labeled by a human rater 

are used to train a deep neural network to detect cases when registration failed. We further validated the results 

on an independent dataset of patients with multiple sclerosis, with manual QC labels available (n = 1200). 

In terms of agreement with a manual rater, our automated QC method was able to achieve 89% accuracy and 

85% true negative rate (equivalently 15% false positive rate) in detecting scans that should pass quality control in 

a balanced cross-validation experiments, and 96.1% accuracy and 95.5% true negative rate (or 4.5% FPR) when 

evaluated in a balanced independent sample, similar to manual QC rater (test-retest accuracy of 93%). 

The results show that DARQ is robust, fast, accurate, and generalizable in detecting failure in linear stereotaxic 

registrations and can substantially reduce QC time (by a factor of 20 or more) when processing large datasets. 
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. Introduction 

Many automatic image-processing techniques to analyze human

rain MRI scans include linear registration to stereotaxic space as one

f the first steps in the pipeline ( Fischl, 2012 ; Jenkinson et al., 2012 ;

ijdenbos et al., 2002 ). Successive image processing steps are highly de-

endent on the success of the stereotaxic registration. Often, a human

xpert rater must manually verify the quality of this step by looking at a

eries of images that show overlap between the registered scan and a ref-

rence template to identify datasets that failed registration. Such failed

atasets may be re-registered with different parameter settings, be sub-

ect to subsequent manual registration, or be discarded from analysis.
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s explicitly stated by Ashburner and Friston (2000) , registration qual-

ty should be maintained as high as possible. Depending on the dataset

nd registration algorithm used, the success rate can vary from almost

00% down to 60% ( Dadar et al., 2018 ). In particular, MRI scans of sub-

ects with space occupying lesions or those with strong atrophy due to

eurodegenerative diseases show lower rates of success when using reg-

stration tools that were originally developed and tested on MRI scans of

oung healthy subjects ( Dadar et al., 2018 ). Also, our experiments show

hat strong atrophy makes the task of manual quality control even more

hallenging when the reference template is representative of a healthy

opulation. 

In a previous paper from our group comparing reliability of linear

egistration algorithms ( Dadar et al., 2018 ), we performed an experi-
ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the 

NI and/or provided data but did not participate in analysis or writing of this 

.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf . 

il 2022 

article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.neuroimage.2022.119266
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2022.119266&domain=pdf
mailto:vladimir.fonov@mcgill.ca
http://www.jedec.org/sites/default/files/docs/jesd89a.pdf
https://doi.org/10.1016/j.neuroimage.2022.119266
http://creativecommons.org/licenses/by-nc-nd/4.0/


V.S. Fonov, M. Dadar, T.P.-A.R.G. ADNI et al. NeuroImage 257 (2022) 119266 

m  

f  

t  

2  

m  

g  

d  

(  

l  

i  

t  

a  

(  

q  

t

 

(  

R  

a  

A  

O  

p  

t  

a  

p  

t  

s  

l  

S  

a  

e  

t  

c  

i  

s  

i  

t

 

t  

t  

t  

a  

m  

i  

t  

o  

B  

i  

a  

p  

d  

i  

Q  

(

 

i  

h  

t  

o  

g  

c  

s  

a  

t  

t  

w  

i  

m  

c  

(  

w  

T  

a  

t  

t

 

m  

B  

a  

o  

m  

c

2

2

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ent where a large number of scans (9325 scans, 3308 unique subjects)

rom the Human Connectome Project (HCP) ( Van Essen et al., 2012 ),

he Alzheimer’s Disease Neuroimaging Initiative (ADNI) ( Mueller et al.,

005 ), the Pre-symptomatic evaluation of experimental or novel treat-

ents for Alzheimer ’s Disease (PreventAD), and the Parkinson’s Pro-

ression Marker Initiative (PPMI) ( Tremblay-Mercier et al., 2014 )

atabases were linearly registered to the MNI-ICBM152 2009c space

 Fonov et al., 2011 ; Manera et al., 2020 ) using five publicly available

inear registration methods. All registrations were then assessed for qual-

ty by a human rater. Since manual quality control of registrations is

ime consuming ( ∼30 h for 9693 registrations) and prone to inter-rater

nd intra-rater errors (e.g., QC intra-rater Dice overlap index of 0.96

 Dadar et al., 2018 )), an automatic method that would be able to assess

uality of registrations accurately and consistently would be useful for

he community. 

Given the emergence of large MRI datasets such as the UKBioBank

UKBB), manual inspection of registration quality becomes unfeasible.

ecently, several papers have been published proposing methods for

utomatic or semiautomatic quality control in large studies ( Alfaro-

lmagro et al., 2018 ; de Senneville et al., 2020 ; Dubost et al., 2020 ).

f particular interest is the work of Alfaro-Almago et al., where a single

ass/fail metric is used to summarize the quality of the MRI acquisi-

ion and preprocessing ( Alfaro-Almagro et al., 2018 ). This method was

pplied to the UKBB project where the number of acquired scans is ex-

ected to be more than 100,000 ( Sudlow et al., 2015 ). In contrast to

his approach, we propose a method focusing on the quality control of a

ingle important step used in many preprocessing pipelines: automatic

inear registration of T1w MRI scans into stereotaxic space. Recently, de

enneville et al. proposed an automated registration QC method known

s RegQCNET to solve the same problem that uses a deep learning-based

stimate of misregistration distance trained on simulated misregistra-

ions ( de Senneville et al., 2020 ). A threshold on the estimated distance

an be used to pass or fail datasets. The main difference of our approach

s that we use a large database of MRI scans that were manually in-

pected by an experienced rater, with registration mistakes correspond-

ng to those produced by several widely used registration tools whereas

he method by Senneville et al. uses artificially generated data. 

Another recently published paper by Dubost et al. (2020) addresses

he problem in a different fashion; by calculating an overlap metric be-

ween segmentation masks of anatomical features (i.e., the lateral ven-

ricles) and the anatomical atlas after registration. This method uses

 different imaging modality (FLAIR) and relies on the automatic seg-

entation of anatomical features without registration. In our opin-

on, this approach relies on an additional unnecessary step (segmen-

ation of lateral ventricles without linear registration) that could be an-

ther point of error or failure. In somewhat similar QC applications,

enhajali et al. (2020) evaluated both manual expert and crowdsourc-

ng techniques for stereotaxic registration QC, but have not developed

n automatic QC method. Other QC systems exist, but they are not ap-

lied to stereotaxic registration. For example, Küstner et al. (2018) have

eveloped a reference-free method to evaluate MRI acquisition qual-

ty using deep learning and the LONI QC system produces a number of

C metrics that can be used to automatically evaluate MRI acquisitions

 Kim et al., 2019 ) . 

Our goal was to design, build, and test a system to automatically

dentify datasets that pass or fail stereotaxic registration QC with very

igh certainty (here we operationally define certainty as True Nega-

ive Rate) so that manual QC can focus only on a much smaller subset

f questionable cases. Given that many registration algorithms have a

reater than 90–95% success rate ( Dadar et al., 2018 ), such a QC tool

ould reduce the manual QC effort by a factor of 10 to 20, a significant

avings of time and energy. We attempted to replicate the behavior of

 human rater in this task by training a deep neural network (DNN)

o determine quality of registrations by analyzing a series of 2D con-

rol images. Following the logic from Ashburner and Friston (2000) ,

e determined that it is more important to ensure the quality of the
2 
mages that were accepted by the automatic rating tool, rather then

aximize the overall accuracy of agreement with the manual classifi-

ation of pass/fail. We thus decided to minimize the False Positive Rate

FPR) metric (reflecting the proportion of incorrect registrations that

ere passed by the automated QC tool) or equivalently maximizing the

rue Negative Tate (TNR). In order to leverage existing network design,

nd to speed training of the DNN, we adapted a pre-trained network

hat behaved well on image classification tasks ( Canziani et al., 2016 ),

he Resnet-18 ( Gross and Wilber, 2016 ; He et al., 2016 ). 

In our paper, we also compared our classification approach to the

isregistration estimation approach by de Senneville et al. (2020) .

ased on our experimental results, misregistration distance estimation

chieved lower performance than direct classification. Finally, to allow

thers to take advantage of our proposed automated QC tool, we have

ade DARQ publicly available at https://github.com/vfonov/DARQ in-

luding the source code and pre-trained neural networks. 

. Methods and materials 

.1. Materials 

We used T1w MRI scans from four different datasets (9693 scans in

otal): 

• ADNI: The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

( Mueller et al., 2005 ), is a multi-center and multi-scanner study with

the aim of defining the progression of Alzheimer’s disease (AD).

Subjects are normal controls, individuals with mild cognitive im-

pairment (MCI) or AD aged 55 years or older. Data was acquired

using 1.5T and 3T scanners of different models of GE Medical Sys-

tems, Philips Medical systems, and SIEMENS at 59 acquisition sites.

We used ADNI1, ADNI2, and ADNI/GO data, including 3136 T1-

weighted scans from 1.5T scanners and 3041 scans from 3.0T. 

• PPMI: The Parkinson Progression Marker Initiative (PPMI)

( Marek et al., 2011 ) is an observational, multi-center and multi-

scanner longitudinal study designed to identify PD biomarkers.

Subjects are normal controls or de Novo Parkinson’s patients aged

30 years or older. Data was acquired using 1.5T and 3T scanners

of different models of GE Medical Systems, Philips Medical sys-

tems, and SIEMENS at over 33 sites in 11 countries. We used 222

T1-weighted scans from 1.5T scanners and 778 from 3T. 

• HCP: The Human Connectome Project (HCP) ( Van Essen et al., 2012 )

is an effort to characterize brain connectivity and function and their

variability in young healthy adults aged between 25 and 30 years.

We used 897 T1-weighted scans from the initial data release. 

• PREVENT-AD: The PREVENT-AD (Pre-symptomatic Evaluation

of Novel or Experimental Treatments for Alzheimer’s Dis-

ease, http://www.prevent-alzheimer.ca ) program ( Tremblay-

Mercier et al., 2014 ) follows healthy individuals age 55 or older

with a parental history of AD dementia. We used T1-weighted 1251

scans from the data released in 2017. 

• IPMSA: To test the generalizability of the model in a completely in-

dependent dataset, we used T1-weighted MRI scans of 1200 patients

with secondary progressive multiple sclerosis (SPMS), randomly se-

lected from the from International Progressive Multiple Sclerosis

Alliance (IPMSA) study ( https://www.progressivemsalliance.org/ ),

scanned on 20 different scanner models (including both 3T and 1.5T)

across 195 sites ( Dadar et al., 2020 ). 

• Automatic registration methods. 

• All 9693 image volumes from the evaluation in Dadar et al. (2018)

were used here for training, validation, and testing. Each volume

was registered to stereotaxic space defined by MNI-ICBM152-2009c

template (referred to below as the MNI template) ( Fonov et al., 2011 ;

Manera et al., 2020 ) using the seven stereotaxic registration proce-

dures listed below yielding a total of 64,476 images that completed

processing and provided QC images: 

https://github.com/vfonov/DARQ
http://www.prevent-alzheimer.ca
https://www.progressivemsalliance.org/
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• MRITOTAL (two versions): a hierarchical multi-scale 3D registration

technique for the purpose of aligning a given MRI volume to an aver-

age MRI template aligned with the Talairach stereotaxic coordinate

system ( Collins et al., 1994 ). We have tested two configurations of

this method: “standard ” and “icbm ”. The source code is available

at https://github.com/BIC-MNI/mni _ autoreg . 

• BestLinReg: a 5-stage hierarchical technique similar to MRITOTAL

that is part of the MINC tools and is based on a hierarchical non-

linear registration strategy developed by Robbins (2003) . We tested

two versions: one where cross-correlation coefficient is used as a

cost function and another using normalized mutual information. The

source code is available at https://github.com/BIC-MNI/EZminc/

blob/ITK4/scripts/bestlinreg _ s . 

• Revised BestLinReg (two versions): This method is the same as

BestLinReg above, but with a different set of parameters and

normalized mutual information cost function. The source code

is available at https://github.com/BIC-MNI/EZminc/blob/ITK4/

scripts/bestlinreg _ claude.pl . A modified version of Revised BestLin-

Reg using a different set of parameters was also applied. 

• Elastix: an intensity-based registration tool ( Klein et al., 2010 )

. Elastix has a parametric and modular framework, where

the user can configure different components of the registra-

tion. We used Mattes mutual information, adaptive stochastic

gradient descent optimizer with Similarity Transform with 7

parameters https://bitbucket.org/bicnist/bic-nist-registration/src/

5d253993e7b9/Elastix . 

• ANTS: a popular registration tool ( Avants et al., 2011 ) that can func-

tion both for linear and nonlinear registration. For this paper we

used ANTS for linear registration with following parameters: regis-

tration was done in three stages, at first stage only translation was

estimated, at the second stage rigid body transformation and finally

full affine transformation, each stage used Mattes mutual informa-

tion as cost function and three hierarchical levels of fitting with dif-

ferent resolution and blurring kernel (4 × 2 × 1vox downsampling,

and 3 × 2 × 1 blurring kernel) using stochastic gradient descent op-

timizer with gradient step of 0.1. 

.2. Manual quality control method 

We used the manual QC result from 64,476 linear registrations from

ur previous paper ( Dadar et al., 2018 ) for training, validation and test-

ng. Resulting transformations were stored as affine 4 ×4 matrices and

pplied to the corresponding original scans to resample them on a 1mm 

3 

oxel grid in stereotaxic space. Then, a series of slices were extracted,

nd the outline of the MNI template brain was overlaid on top to cre-

te an image that was given to the human rater to assess registration

erformance (See Fig. 1 ). Assessment was done on a PASS/FAIL basis,

lind to the registration method, dataset, and clinical diagnosis. 

Out of 64,476 examples, 54,458 (84.5%) were accepted (passed) and

0,018 (15.5%) were rejected (failed) by the human rater. To test re-

roducibility of the human rater results, a random subset consisting of

000 examples were re-evaluated by the same rater, resulting in intra-

ater Dice kappa agreement rate ( Sørensen, 1948 ) of 0.96 and intra-rater

greement rate of 93%. 

.3. Automatic registration quality control with deep neural network 

We modified an existing deep neural network (DNN) design to auto-

atically assess stereotaxic registration quality, reusing weights trained

n the ImageNet database ( Fonov et al., 2018 ; Gross and Wilber, 2016 ;

ussakovsky et al., 2015 ). Our motivation was to be able to use a stan-

ard pre-trained deep learning model, as a feature extractor, but to make

t sensitive to the orientation and position of the object inside the image,

s well as combining features from several different slice views. 

We compared the performance of several variants of models based on

esNET available in the pytorch library (ResNET-18, 34, 50, 101, 152)
3 
 Gross and Wilber, 2016 ; He et al., 2016 ). Instead of feeding a single

mage with 60 different sub-images showing coronal, sagittal and trans-

erse slices of the registered volume as in the human quality control

rocess, we used a simpler set of images that was created in the follow-

ng fashion: (i) the original 3D MRI scan in the native space, without any

reprocessing, was resampled to the MNI template space using the lin-

ar transformation matrix provided by registration algorithms; (ii) the

hole range of the image intensities of the input file was mapped to the

.0–1.0 range; (iii) one Axial, one Sagittal and one Coronal slice were

xtracted from the middle of the registered 3D volume; (iv) the three 2D

lice images were resampled to have 256 pixels in the longest dimension

nd then cropped around the central area to 224 ×224 pixels. These im-

ges were stacked to form a 224 ×224 ×3 dataset that was used as input

o the model. Fig. 2 A shows an example of three images corresponding

o a scan that passed manual QC and three others that failed QC. Fig. 2 C

hows the input of DNN when reference image of the MNI template is

sed. 

In order to transfer domain knowledge, we modified a DNN trained

n the ImageNet dataset (DNN0) in the following fashion (see Fig. 3 ):

i) the input layer was altered to deal with grayscale images by collaps-

ng the weight tensor along the dimension corresponding to input RGB

imension; (ii) the last few layers corresponding to high level features

sed for ImageNet classification and spatial pooling were removed; (iii)

ach input feature (i.e. channel) from the image stack was processed se-

uentially using the same DNN0 layer; (iv) outputs of DNN0 layer corre-

ponding to the three different images from the stack were concatenated

nd used as inputs to the last several layers, replacing the behavior of

he layers originally removed from DNN0 with the goal of making them

ore sensitive to spatial orientation and position; (v) the final layer was

odified to produce one of two types of output; a binary pass or fail or

 continuous scalar estimate of misregistration distance. The resulting

odel is called QCResNET-X for pass/fail model and DistResNET-X for

isregistration distance model, where X corresponds to the choice of

nderlying ResNET (i.e., ResNET-18, 34, 50, 101, 152). 

We also created an alternative scheme, where reference images ex-

racted from MNI template ( Fig. 2 B) were used as an additional set of

eatures in the image stack. The rationale behind this approach is to

rain the model to reproduce visual process that is used by manual rater,

here 3D scan in the stereotaxic space is visually compared to the out-

ine of the registration target, providing clues to the proper location of

he gross anatomical features w.r.t to the corresponding features of the

arget. 

In this case, the model was modified to accept 6 input grayscale fea-

ure maps – combining those that were subject-specific, and the others

hat were fixed for all subjects (see Fig. 2 B) In this scheme, the network

nput was six images stacked together, to form 224 ×224 ×6 dataset in the

ollowing order Axial sample, Axial Reference, Coronal Sample, Coronal

eference, Sagittal sample, Sagittal Reference. 

We compared two approaches for misregistration representation:

ne based on binary classification (i.e. pass or fail) and the second one

imilar to the method from de Senneville et al. (2020 ) where misreg-

stration distance is estimated. Cross-entropy loss function was used as

n objective function in pass/fail classification and mean square error

bjective function in case of distance estimation. The ADAM optimizer

as used to train the network. 

.4. Silver standard and distance estimation 

To estimate misregistration distance, we created a “silver standard ”

ransformation for each original MRI volume, by averaging all transfor-

ations that passed manual QC (i.e., averaging up to six transforms for

ach subject using the six methods described in Section 2.2 ). We then

alculated the distance between each estimated transformation and the

silver standard ”, as defined in Eq. (1) , where ROI icbm 

is the bound-

ng box of the brain ROI of the ICBM 152 2009c template ( Fonov et al.,

011 ; Manera et al., 2020 ), X a - silver standard transform, X b - estimated

https://github.com/BIC-MNI/mni_autoreg
https://github.com/BIC-MNI/EZminc/blob/ITK4/scripts/bestlinreg_s
https://github.com/BIC-MNI/EZminc/blob/ITK4/scripts/bestlinreg_claude.pl
https://bitbucket.org/bicnist/bic-nist-registration/src/5d253993e7b9/Elastix
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Fig. 1. QC image for the human rater. Grayscale - one example subject’s MRI scan after registration and resampling into stereotaxic space on a 1 mm isotropic grid, 

red line - outline of the MNI-ICBM152-2009c brain template. One can see how the average template outline roughly fits the brain contour of the subject indicating 

a good registration. 

Fig. 2. Examples of images generated for automated QC script, used as input for QCResNET and DistResNET training. 
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ransform, distance is expressed in millimeters in stereotaxic space. 

 𝑖𝑠𝑡 
(
𝑋 𝑎 , 𝑋 𝑏 

)
= 

|||𝑋 𝑎 
−1 ◦𝑋 𝑏 

|||where |𝑋 | = 𝑚𝑎𝑥 ( |𝑥 − 𝑋 ( 𝑥 ) |) , 𝑥 ∈ 𝑅𝑂 𝐼 𝑖𝑐𝑏𝑚 (1)

.5. Data augmentation 

.5.1. Pass/fail classification model 

For the purpose of training the model for pass/fail approach we cre-

ted additional QC images, based on the information from manually
4 
Ced results. To simulate image acquisition with thick slices, the pre-

egistered scans were downsampled in z direction using scaling factor

andomly chosen between 1, 2 and 3; to simulate a restricted field of

iew, we randomly cropped either top 20% slices, or bottom 20% of

lices or none; to simulate small imperfections of the registration param-

ters we added random rotations around x, y, and z axis in the range

 − 0.1,0.1] degrees; and finally, a random flip along the x (left-right) axis

as added. We generated 5 augmented samples per each original sam-
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Fig. 3. Overall QCResNET-X and DistResNET-X 

design, dotted nodes represent optional compo- 

nents; BN - batch normalization; ReLU - recti- 

fied linear unit; Conv - 2 dimensional convolution; 

numbers are number of channels, X- ResNET ex- 

pansion factor, F - number of input features (3 or 

6); Red and Blue colored parts are QCResNET and 

DistResNET evaluation outputs respectively. 
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le, resulting in 322,460 samples. We used the same manual QC labels

or the augmented datasets, with the assumption that the data augmen-

ation steps applied to the preregistered data change the characteristics

f the data, and because we change the registration parameters only

lightly, these augmentation steps do not change the outcome of the

anual stereotaxic registration QC. 

.5.2. Distance estimation model 

In case of the distance estimation training, we used an approach sim-

lar to the one published in ( de Senneville et al., 2020 ): we used only

amples where manual quality control was passed, and then generated

andom transformations with uniform distribution of distances from the

silver standard ” (see below). We also simulated random flips along x,

nd random cropping in z direction to simulate restricted field of view

nd downsampling factor in z direction. We produced 65,275 training

amples in this approach. 

.5.3. Pass/fail classification model trained on synthetic data 

To compare the performance of the classification model w.r.t to the

raining data, we created an additional training dataset, where the syn-

hetics samples generated for distance estimation model were assigned

abels “PASS ” or “FAIL ” depending on the distance from the “silver stan-

ard ”. The threshold between “PASS ” and “FAIL ” was determined in a

ethod consistent to the ( de Senneville et al., 2020 ): i.e. by performing

ogistic regression. We then trained the same models using this synthetic

raining dataset, and compared their performance against the models

rained on real manually labeled data. 

.6. Network training 

We used an 8-fold cross-validation scheme, where all available sam-

les are split into 8 equal partitions, based on unique subjects. At

ach round of cross-validation, the corresponding registration result

f each partition is used as “testing ” dataset and the rest of data is

sed as “training ” dataset. A small subset of the “training ” dataset

200 unique subjects) was excluded from training and used for on-

ine validation ( “validation ” dataset). To compute statistics, the “vali-

ation ” and “testing ” datasets were balanced to have an equal mix of
5 
ass/fail samples. Training was performed in epochs when all avail-

ble samples from the “training ” subset were passed through the train-

ng loop. At the end of each epoch, the performance of the current

odel was evaluated using the “validation ” dataset and the four models

chieving best performance in terms of true negative rate, true posi-

ive rate, accuracy (ACC) and area under the ROC curve (AUC) were

reserved. 

An initial experiment to estimate the number of epochs needed to

rain a classification model, we compared the performance of QCRes-

ET 18,34,50,101,152 after 30 epochs, using only one fold out of 8.

erformance on the validation dataset was evaluated after every 200

ini-batches; accuracy, true positive rate, true negative rate and area

nder the ROC curve were calculated. Final performance of each model

as assessed on the “testing ” dataset, and only AUC was calculated.

ased on the results shown in Fig. 4 , we determined that training 10

pochs was enough for all models. Note that, for example, the model

chieving best TNR for QCResNET18 was found after 10th epoch, and

he best accuracy after 4th epoch. 

As a result of the initial experiment performed to determine the

ptimal number of epochs used for training, we noticed that the fi-

al performance depends on which epoch was chosen for early stop-

ing to avoid overfitting. We therefore also compared the performance

f the method based on resnet-18 using 8-fold cross validation, de-

ending which metric was used for early stopping ( Fig. 5 ). The model

chieving the highest TNR, is also guaranteed to achieve the lowest

PR, since FPR = 1-TNR. This model was chosen as a final model for the

raining. 

Other training considerations: we used gradient magnitude clipping

t 1.0 to avoid the problem of exploding gradients, learning rate of 1e-5

as used for all models, 100 warm up iterations with learning rate of

e-9 were used to initialize weights of ADAM optimizer. 

In the case of the distance estimation model, we trained a model

istResNET-18 for 30 epochs, calculating mean squared error in dis-

ance estimation after each 200 mini-batches. We used only augmented

amples for training the model, and samples from the original manual

C database for testing to mimic, as closely as possible, the training reg-

men of de Senneville et al. (2020) . Fig. 6 shows the progression and the

esult of training for 1 fold out 8. 
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Fig. 4. Progressions of training for QCResNET-18,34,50,101,152 with reference. Left: performance on the online validation dataset calculated after each 200 mini- 

batches, smoothed with loess function; Right:AUC of the performance on testing dataset. Overfitting is visible after approximately 10 epochs. QCResNET 18 and 34 

shows the best performance in terms of AUC. 

Fig. 5. Violin plots showing performance of the QCResNET-18 with reference, depending on the early stopping criteria. Vertical line represents interquartile range, 

black dot – median value. Value highlighted in red corresponds to the model achieving the best true negative rate. 
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To test the final performance of DistResNET-18, 34, 50, 101, 152,

e compared the predicted misregistration against the silver standard,

n terms of root mean square difference. We also calculated the area

nder the curve for each experiment. We used early stopping based on

he means squared distance from the ground truth for the validation
ataset. m  

6 
To compare the performance of the classification model trained

n real data with the model trained on synthetic data, an 8-fold

ross-validation experiment was performed using the synthetic training

ataset generated as explained in Section 2.5.3: in each fold we used

ynthetic data to train the classification model and then tested its perfor-

ance on the real data, using the same parameters as described above.
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Fig. 6. Training distances estimation model (DistResNET-18), 30 epochs, mean squared error is calculated after 200 mini-batches. 
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.7. Independent sample validation 

To assess the performance of the proposed method on an indepen-

ent sample not used during the training and cross-validation exper-

ments, we applied the revised_bestlinreg ( Dadar et al., 2018 ) linear

egistration technique to 22,757 scans from the IPMSA dataset. Man-

al QC was performed sequentially until 600 samples that passed QC

nd another 600 samples that failed QC were identified. Then these

amples were used to test performance of the DARQ QCResNet-18 and

istResNet-18. 

To further demonstrate the performance of the method on the in-

ependent dataset, we have provided six examples in the supplemental

aterials document: three examples of the false positive (manual QC

ailed, automated QC passed) and three examples of the false negatives.

.8. Data and code availability statement 

The data that support the findings of this study were obtained from

he ADNI (publicly available at http://adni.loni.usc.edu/ ), PPMI (pub-

icly available at https://www.ppmi-info.org/ ), HCP (publicly available

t https://www.humanconnectome.org/ ), and PREVENT-AD (publicly

vailable at https://portal.conp.ca/dataset?id = projects/preventad-

pen ) datasets. IPMSA is not publicly available. The original imple-

entation ( Fonov et al., 2018 ) was done using the Torch library
7 
 Collobert et al., 2011 ), and we have re-implemented the software

n pyTorch ( Ketkar, 2017 ). All experiments were performed using

he Torch version. The source code of the method, implemented in

orch and pyTorch (python) and pre-trained neural network is publicly

vailable at https://github.com/vfonov/DARQ . 

. Results 

Following the initial experiment with 30 epochs mini-batches using

ne out of 8 folds, we observed over-fitting after 10 epochs, so the rest

f cross-validation experiments were conducted with 10 epochs. 

We tested DARQ models QCResNET-18, − 34, − 50, − 101, and − 152.

wo training schemes were tested: 1. using only QC images (No Ref-

rence) and 2. combining QC images with the images of the reference

ataset, i.e. MNI template (With Reference). The resulting agreement

ith the manual rater measured by accuracy, true positive rate, true

egative rate and area under receiver operating characteristic curve

 Robin et al., 2011 ) were used to evaluate performance of the models;

e used early stopping criterion based on the best TPR. The QCResNET-

8 with reference images showed the best results in terms of TNR, at

he expense of slightly lower TPR (see Fig. 7 ). 

Results for experiment with Distance Evaluation model (DistResNet-

8, 34, 50, 101, 152) are shown in Fig. 8 . 

http://adni.loni.usc.edu/
https://www.ppmi-info.org/
https://www.ppmi-info.org/
https://portal.conp.ca/dataset?id=projects/preventad-open
https://github.com/vfonov/DARQ
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Fig. 7. Violin plots showing performance of all tested classification models with and without reference image, compared to the manual rater. 

Fig. 8. Performance of all tested distance estimation models with and without reference image. 
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As expected, the more complex model (i.e., DistResNet-152) esti-

ated the misregistration distance better. On the other hand, if the dis-

ance were to be used for classification task, based on a threshold, the

uc analysis shows that all models with reference showed approximately

he same result. 

Comparing performance of the DistResNet vs QCResNet, all distance

stimation models achieved lower AUC than classification models (see

igs. 7 and 8 ), in particular the best AUC for DistResNet152 with refer-
8 
nce is 0.9359 and the AUC for QCResNet152 with reference is 0.9590

or the model with equal number of parameter (statistical significance

f the difference p = 0.0002 using Wilcoxon rank sum exact test) 

Finally, we only used the QCResNET-18 model with reference (i.e.,

he model with the best performance based on the previous assess-

ents) for the distance experiments. The distribution of the distances be-

ween “silver standard ” transformations and transformations estimated

y each method is shown on Fig. 9 (left panel). The behavior of the



V.S. Fonov, M. Dadar, T.P.-A.R.G. ADNI et al. NeuroImage 257 (2022) 119266 

Fig. 9. Distance from the “silver standard ” in mm, for the manual QC results, and for the outcome of DARQ QCResNet-18 and DistResNet-18 with reference methods 

cross-validation. 
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istances depending on the automated QC outcome is also shown on

ig. 9 (right panel). For the manual quality control, the cases that

assed had distances (mean ± sd) values of 5.96 ± 2.93mm and those that

ailed had values of 25.2 ± 23.2 mm. For the automated QC, true

ositive cases had the lowest average distance compared with the sil-

er standard 5.68 ± 2.32 mm, followed by false negative 9.7 ± 5.36

m, false positive 12.2 ± 6.6 mm, and true negative 27.6 ± 24.4 mm

ases. 

Results of the experiment comparing performance of the classifica-

ion model trained on synthetic dataset is shown on Fig. 10 . Overall,

sing synthetic data leads to decreased performance for all proposed

odel variants (number of parameters, with and without the reference).

To assess the generalizability of DARQ to independent data with

ifferent acquisition parameters and from a variety of scanner models

nd manufacturers, we applied QCResNET-18 to the multi-center and

ulti-scanner IPMSA dataset and achieved ACC = 96.1%, TPR = 96.7%,

NR = 95.5%, AUC = 98.7%. Fig. 11 shows the distribution of the con-

inuous output generated by the automated QC tool for the passed and

ailed registrations for the IPMSA data. 

. Discussion 

In this paper, we proposed a deep learning based, fully automated

ool, for quality control of linear stereotaxic registration. We have

emonstrated that it is possible to automate the task of manual qual-

ty control using a deep learning network with results comparable to

he human rater. The proposed tool had good agreement with the hu-

an ratings in the cross-validation experiments as well as when tested

n an independent sample not used for training. 

Note that not all stereotaxic registration that FAIL QC are clear catas-

rophic failures. Manual QC was evaluated using QC images like that

hown in Fig. 1 and the rater could zoom into different parts of the

omposite image to make their decision. Since linear registration only

ccounts for the global parameters of translation, rotation and scaling,

here will be different levels of local residual misregistration between

he gray level image of the subject and the red contours of the template.

uring manual QC, these differences drive the subjective decision made

o PASS or FAIL a dataset. For example, some cases have a z-scale that is

lightly too large in the opinion of one rater, while for another rater, the

urvature at the apex of the brain might be considered to be simply due

o residual misalignment between subject and template and thus rated
9 
s a PASS, thus giving rise to inter-rater agreement that is not quite

qual to 1.0. 

All automatic models had excellent performances in detecting failed

egistration cases, with accuracies ranging between 87.3% to 89.1%

ith balanced testing sets. QCResNET-18 network with reference had

he best performance in terms of TNR, and was selected as the final

odel. Interestingly, all methods had better performances in terms of

alse positive rate ( Fig. 7 ) when reference images extracted from the

NI template were also used as an additional set of features. 

The performances of the deep learning methods (with accuracy val-

es ranging between 87. and 89.1% for the cross-validation experiment

nd 96.1% for the independent sample) were comparable with the intra-

ater variability (test-retest accuracy of 93%), indicating that some of

he disagreements might be due to human rater variability. 

To enable a more quantitative assessment of the registrations, we

efined a silver standard transformation for each scan, based on the

verage of all transformations that passed QC by the human rater. As

xpected, the distance between this silver standard and passed registra-

ions was much lower 6.6 (4.5) mm than the failed registrations for the

anual ratings 28.1 ± 31.4 mm. Similarly, the distance for the true pos-

tive automated QC results was also much lower 6.3 ± 4.1 mm than the

rue negative automated QC results 32.0 ± 34.3 mm. Interestingly, the

verage distance for both false negative 11.5 ± 8.8 mm and false positive

5.3 ± 12.0 mm cases was somewhere in between ( Fig. 8 ), indicating

hat those are likely borderline cases that might have been failed by a

tricter human rater. This was also our impression when we visually as-

essed the cases passed in the manual QC and failed by DARQ and vice

ersa. Evaluation of the performance of the proposed method on an inde-

endent multi-center and multi-scanner dataset showed that the results

re generalizable to data with different acquisition protocols obtained

rom different scanner models and manufacturers. Compared with the

anual rater, DARQ had excellent FPR (1.8%), correctly identifying the

ailed registrations. 

We also compared our classification approach to the misregistration

stimation approach, similar to that used by de Senneville et al. (2020) .

ased on our experimental results, while the DistResNet misregistra-

ion model was able to estimate distances (compared against our silver

tandard distance), it achieved a lower performance than our proposed

echnique in terms of (pass/fail) registration classification (auc values

anging from 91.3 to 93.5 versus 95.2 to 96.2, Figs 7 and 8 ). For ex-

mple, a small rotation error, combined with a small scaling error may
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Fig. 10. Comparing performance of the classification model w.r.t training data: synthetic vs real. 

Fig. 11. Distribution of the continuous outputs generated by the automated QC tool for the registrations passed and failed by the human rater. 
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ass QC, but the same distance with solely a translation error may not

e acceptable for QC ( Fig. 9 ). Therefore, while the registration error

istance estimation method might be beneficial in other applications,

or the specific task of registration QC, our proposed method may be

uperior. 

Since the majority of scans are usually accurately registered by most

ommonly used registration methods, higher sensitivity rates (i.e., de-

ection of failed scans, as opposed to higher specificity) are particularly

esirable for an automated QC tool, since it is much more practical (i.e.
10 
ess time consuming) for a human rater to verify quality of a small num-

er of false positives (registration that are falsely identified failures) as

pposed to a large number of false negatives (good registrations that are

dentified failed scans). For example, out of 22,757 registrations from

he IPMSA dataset, the automated QC tool failed only 930 cases (4.09%).

f we are confident that all the failed cases are accurately captured by

he automated QC tool, the human rater only needs to assess the quality

f the very small percentage of cases that were failed by the automated

C tool. In addition, removing human effort from (most of) the regis-
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ration QC process enables the users to rerun the registration methods

or the failed cases with different settings and parameters to ensure a

igh acceptance rate for their cohort of interest. In other words, the

roposed QC procedure could be incorporated into the process of the

egistration to enforce the method to repeat registration with different

arameter settings until an accepted registration (by the automated QC

ool) is obtained. A false negative (failing an acceptable registration) in

his case would only increase registration time by forcing the method to

epeat the process. Therefore, a lower TPR at the expense of a low FPR

ould be tolerable and lead to the overall improvement of the registra-

ion performance. The use of such automated QC tools may likely affect

he outcome of processing pipelines. This is a complex and open issue as

he answer is dependent on the specific pipeline and research question

nd should be the subject of future work. Other automated QC registra-

ion tools are built on simulated data ( de Senneville et al., 2020 ). Instead

f artificially generating failed registrations (i.e., by applying randomly

enerated incorrect transformations to the original images), we trained

nd validated the performance of DARQ on a four large multi-center

nd multi-scanner datasets comprised of actual registrations that were

roduced by different commonly used image registration pipelines. This

nables the proposed method to learn the realistic types of registration

ailures that commonly occur, as opposed to synthetically generated fail-

res that might be much easier to capture, but might not be likely to

ccur in real settings. 

We have shown that DARQ is robust over a wide range of ages

nd different disease states (i.e., healthy, AD, PD, MS). We note

hat the ICBM152_2009c template used here is defined to be in

he same space as the other non-linear unbiased average ICBM152

emplates (found at http://nist.mni.mcgill.ca/icbm-152-nonlinear-at

ases-2009 ) and the linear average ICBM152 template (found at

ttp://nist.mni.mcgill.ca/icbm-152lin ) as well as the older MNI305

emplate ( http://nist.mni.mcgill.ca/mni-average-brain-305-mri ). A

tereotaxic transformation to the ICBM152_2009c template that passes

C would also pass QC for registration to these other templates as

here are almost no differences in position, orientation or extent in

he left-right, AP or SI. In future work, it may be interesting to apply

 strategy similar to that proposed here to develop new tools to auto-

atically QC other registration tasks, e.g., linear registration to other

arget images, multi-modality registrations, and non-linear stereotaxic

egistrations. The open-source implementation of DARQ that we have

ade publicly available will allow researchers to adapt and retrain our

roposed model to perform a wider range of QC tasks once a suitably

arge set of training data becomes available. 

Manual quality control of linear registrations is time consuming

 ∼30 h for 9693 registrations) and prone to inter-rater and intra-rater

rrors ( Dadar et al., 2018 ), making it particularly challenging for large

atabases such as the UK Biobank, NACC, and ADNI. DARQ is generaliz-

ble to data from different scanners since it has been trained and exten-

ively validated on data from multiple scanners. The proposed technique

ill save a significant amount of human effort in processing large imag-

ng databases and will increase reproducibility of results. Finally, the

roposed automated QC tool could be used for fast and efficient auto-

atic testing of the robustness of image registration methods. Finally,

e have made two implementations of DARQ along with the pre-trained

odels publicly available. 
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pen ) datasets. IPMSA is not publicly available. The original imple-

entation ( Fonov et al., 2018 ) was done using the Torch library

 Collobert et al., 2011 ), and we have re-implemented the software
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n pyTorch ( Ketkar, 2017 ). All experiments were performed using
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orch and pyTorch (python) and pre-trained neural network is publicly

vailable at https://github.com/vfonov/DARQ . 
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